
BUILDING EMBEDDED SOLUTIONS

WITH MODERN SOFTWARE TOOLS

F E B . 2 0 2 2 | T H E R N D G R O U P - A G E N E R 8 C O M P A N Y

When project managers hear a project involves writing embedded software there is an expectation that a

software developer with very specialized skills will be required to work on the project. Embedded software

development historically requires a developer with both an electrical engineering and computer science

background, writing software and firmware in a low-level language like C or C++, acquiring expensive

software development tools, and typically the developed user interface will be rudimentary by modern GUI

standards.

While many embedded software projects still share these characteristics, there have emerged new

technologies that make it possible to perform embedded software development using modern software

development tools and improve the productivity of embedded development exponentially. This case study

describes RND Group’s experiences with writing software for embedded devices using open-source tools,

high-level programming languages, modern UI toolkits, and containerization technology that facilitates

developing and testing a high percentage of the software before hardware is available.

Written by Brad Graves
Contributions by Dr. Hal Holmes

BUILDING EMBEDDED SOFTWARE

ONE CONTAINER AT A TIME

F E B . 2 0 2 2 | T H E R N D G R O U P - A G E N E R 8 C O M P A N Y

WHAT IS AN EMBEDDED SYSTEM?

An embedded system shares many of the

same architectural characteristics of a

general-purpose system – there is an

operating system, device interfaces / device

drivers, business logic, and a user interface.

The main difference between an embedded

system is that it is designed and built for a

specific purpose and many of the features

found in a general-purpose system, like

networking, security, configuration, and

various applications are removed or scaled

back. The paring down of the features in the

embedded system allows the software to run

on more constrained processors with less

memory and reduced storage and power

consumption requirements. Embedded

systems are very common in smaller sized

devices, such as handheld or portable units

and especially devices that must be capable

of operating on battery power.

There are many operating systems that

can be used for embedded systems

development, but the leading choice today

is Linux. Linux is an open-source operating

system and there are various versions of

Linux that have been customized to

perform well as embedded operating

systems, including Android, Maemo,

BusyBox, Yocto / Open Embedded,

Buildroot, and Mobilinux.

F E B . 2 0 2 2 | T H E R N D G R O U P - A G E N E R 8 C O M P A N Y

Docker is a software containerization

technology that uses virtualization features built

into operating systems such and Linux and

Windows to support the creation of software

packages. These software packages bundle a

full stack of software – application, system

services, file system, and device services – that

runs in its own separate virtual environment.

Docker containers offer numerous benefits,

including being much lighter weight than

traditional virtualization technologies, the ability

to build and extend a Docker container from

other pre-existing Docker containers, and a

guarantee that the software package in the

Docker container performs the same way

regardless of what hardware it is deployed on.

DOCKER + EMBEDDED LINUX

Adoption and use of Docker has grown

exponentially in the 8 years since its first

release - including in the medical device

software space. RND has been using Docker

for several of its customer projects over the

past 2-3 years.

In a natural evolution and convergence of

technologies, there are now versions of

embedded Linux that include Docker

infrastructure support, including Linux

microPlatform from Foundries.io, TorizonCore

from Toradex, and balenaOS from balena.

These products provide a Linux distribution

and free embedded software developers from

the need to build customized Linux images

and, instead, focus on developing applications

that run in containers. As illustrated below,

multiple containers can be created, if desired,

with containers communicating with other

containers through well-known channels, such

as file sharing, TCP, and HTTP.

https://www.toradex.com/operating-systems/torizon-core?gclid=CjwKCAiA6Y2QBhAtEiwAGHybPfLNIzCTuggU0GGfuCK6c4LLJIuazs-EJ0Hjtsb0n7x9CMyIfFTfRxoCB-sQAvD_BwE
https://www.toradex.com/torizon?gclid=Cj0KCQiAubmPBhCyARIsAJWNpiNSqOBHce-oDU7zWrjACSTmAiF7i2XY885PsRChWBHg3IQWUPECgb8aAl8zEALw_wcB

F E B . 2 0 2 2 | T H E R N D G R O U P - A G E N E R 8 C O M P A N Y

The software architectures used for these two
projects are similar and are depicted above.

EXAMPLE PROJECT ARCHITECTURE

RND has recently delivered two different

medical device software systems using Docker

containers running on TorizonCore embedded

Linux distribution. These systems include a

handheld PCR testing device and a desktop

blood testing device. Both of these devices are

portable and run 8+ hours on battery power.

UI / Business Logic
Written in C# and .Net Core, this is a web server

that includes features like run workflow

management, results display, QC run

management, user / account management, audit

trail, and reporting. The UI is written in React,

Angular, or Razor and is rendered by the Kiosk

Browser container.

Results Processor
Written in C# or Python, this container isolates

assay-specific results calculation logic and is

called by the UI / Business Logic container.

Weston
Provided by Toradex, this container is a window

manager that orchestrates startup of display

windows, such as the one produced by the Kiosk

Browser container.

Kiosk Brower
Provided by Toradex, this container is an HTML

web browser that connects to the webserver

provided by the UI / Business Logic container.

Hardware Controller
Written in C# and .Net Core, this container

provides hardware services and interacts with the

Linux kernel and custom device drives for

hardware control. The UI / Business Logic

container has a command/response interface to

communicate with this container.

The containers in this architecture include:

https://www.toradex.com/operating-systems/torizon-core?gclid=CjwKCAiA6Y2QBhAtEiwAGHybPfLNIzCTuggU0GGfuCK6c4LLJIuazs-EJ0Hjtsb0n7x9CMyIfFTfRxoCB-sQAvD_BwE
https://www.toradex.com/
https://www.toradex.com/

F E B . 2 0 2 2 | T H E R N D G R O U P - A G E N E R 8 C O M P A N Y

There are a number of advantages of using a

software architecture like the one described

above, including:

1. Use of low cost, open-source languages,

frameworks, and operating systems allows

development and deployment with no run-time

royalty costs.

2. Use of a high-level, commonly known

language like C# allows developers to

concentrate on writing application logic and

allows organizations to have access to a

larger pool of development talent who know

C#.

3. Modular breakdown of the software into

separate containers allows developing

different parts of the application independently

and allows for each component/container to

focus on a well-defined set of responsibilities.

4. Simulation support is facilitated inherently

by the well-defined interfaces between

containers. For example, the Hardware

Controller container can be replaced to

simulate the hardware behavior and

development of the other containers can

proceed in parallel to hardware development.

5. Cross-platform support is facilitated in two

ways. The use of .Net Core allows code to be

written and tested on Linux or Windows

outside of a Docker container. And, when

deployed inside a Docker container, which

are operating system-specific, the Docker

containers can be hosted and tested on a

variety of operating systems, including Linux

and Windows.

F E B . 2 0 2 2 | T H E R N D G R O U P - A G E N E R 8 C O M P A N Y

D R . H A L H O L M E S
C H I E F E N G I N E E R

C O N S E R V A T I O N X L A B S
T H Y L A C I N E B I O S C I E N C E S

CUSTOMER TESTIMONIAL

www.RNDgroup.com

Visit Us Online:

www.gener8.net

If your company is contemplating developing medical

device software and is interested in learning more

about the advantages of using embedded Linux for

your platform, please contact The RND Group today.

"The software architecture RND created for our handheld medical device provided us great

flexibility in development. We were able to quickly deploy a demanding user interface, and the

architecture allowed us to rapidly iterate and modify our UI, key functionality, and implement

new features throughout our development and user testing. This software format also allowed

us to first test updates on the desktop and with carrier boards while we were still working out

our hardware and complete instruments were scarce or unavailable. Complimenting this

architecture with RND’s adept and agile project management enabled us to move our

embedded software from requirements to reality more efficiently than I thought possible."

RND has been pleased with the stability and maturity of using Docker and the TorizonCore Linux

distribution. Toradex provides a larger number of pre-built containers and pre-built Linux kernel images.

These tools and building blocks have significantly reduced the amount of time that is typically required

to build customized Linux distributions using Yocto or similar tools for embedded projects. RND has a

number of developers experienced in C# and in developing web user interfaces, so the ability to use

these tools when creating software for an embedded Linux system allows RND to readily staff these

projects.

FINAL THOUGHTS

https://www.linkedin.com/in/hal-holmes-53228864/
https://conservationxlabs.com/nabit
https://conservationxlabs.com/nabit

